Optical micro-spectroscopy of single metallic nanoparticles: quantitative extinction and transient resonant four-wave mixing.
نویسندگان
چکیده
We report a wide-field imaging method to rapidly and quantitatively measure the optical extinction cross-section σ(ext) (also polarisation resolved) of a large number of individual gold nanoparticles, for statistically-relevant single particle analysis. We demonstrate a sensitivity of 5 nm(2) in σ(ext), enabling detection of single 5 nm gold nanoparticles with total acquisition times in the 1 min range. Moreover, we have developed an analytical model of the polarisation resolved σ(ext), which enabled us to extract geometrical particle aspect ratios from the measured σ(ext). Using this method, we have characterized a large number of nominally-spherical gold nanoparticles in the 10-100 nm size range. Furthermore, the method provided measurements of in-house fabricated nanoparticle conjugates, allowing distinction of individual dimers from single particles and larger aggregates. The same particle conjugates were investigated correlatively by phase-resolved transient resonant four-wave mixing micro-spectroscopy. A direct comparison of the phase-resolved response between single gold nanoparticles and dimers highlighted the promise of the four-wave mixing technique for sensing applications with dimers as plasmon rulers.
منابع مشابه
Tunable Plasmonic Nanoparticles Based on Prolate Spheroids
Metallic nanoparticles can exhibit very large optical extinction in the visible spectrum due to localized surface plasmon resonance. Spherical plasmonic nanoparticles have been the subject of numerous studies in recent years due to the fact that the scattering response of spheres can be analytically evaluated using Mie theory. However a major disadvantage of metallic spherical nanoparticles is ...
متن کاملCoherent Fano resonances in a plasmonic nanocluster enhance optical four-wave mixing.
Plasmonic nanoclusters, an ordered assembly of coupled metallic nanoparticles, support unique spectral features known as Fano resonances due to the coupling between their subradiant and superradiant plasmon modes. Within the Fano resonance, absorption is significantly enhanced, giving rise to highly localized, intense near fields with the potential to enhance nonlinear optical processes. Here, ...
متن کاملNondegenerate four-wave mixing in graded metallic films
The effective nondegenerate four-wave mixing (NDFM) susceptibility of graded metallic films with weak nonlinearity is exactly derived by invoking the local-field effects. It is found that the presence of gradation in metallic films can yield a broad resonant plasmon band in the optical region, which results in a large enhancement in the NDFM response and thus a large figure of merit. © 2005 Ame...
متن کاملSuppression of Four Wave Mixing Based on the Pairing Combinations of Differently Linear-Polarized Optical Signals in WDM System
Data transmission in optical systems and increased transmission distance capacity benefit by using optical amplification wavelength division multiplexing (WDM) technology. The combination of four waves (FWM) is a non-linear effect in the wavelength division multiplex (WDM), when more than two wavelengths of light in a fiber launch will occur. FWM amount depends on the channel, the channel spaci...
متن کاملUltrafast optical spectroscopy of spectral fluctuations in a dense atomic vapor.
Transient four-wave mixing experiments with 100 fs pulses in a dense potassium vapor probe the electronic energy fluctuations that lead to optical decoherence. Echo-peak shift experiments yield a biexponential two-time correlation function of energy level fluctuations. Molecular dynamics simulations show that the slow component is a many-body excitonic contribution arising from long-range reson...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Faraday discussions
دوره 184 شماره
صفحات -
تاریخ انتشار 2015